
ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-1

Chapter 13
ARM Image Format

This chapter describes the ARM Image Format (AIF). It contains the following
sections:

• Overview of the ARM Image Format on page 13-2

• AIF variants on page 13-3

• The layout of AIF on page 13-4.

ARM Image Format

13-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

13.1 Overview of the ARM Image Format

ARM Image Format (AIF) is a simple format for ARM executable images, consisting
of:

• a 128-byte header

• the image code

• the image initialized static data.

An AIF image is capable of self-relocation if it is created with the appropriate linker
options. The image can be loaded anywhere and it will execute where it is loaded. After
an AIF image has been relocated, it can create its own zero-initialized area. Finally, the
image is entered at the unique entry point.

ARM Image Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-3

13.2 AIF variants

There are three variants of AIF:

Executable AIF
Executable AIF can be loaded at its load address and entered at the same
point (at the first word of the AIF header). It prepares itself for execution
by relocating itself if required and setting to zero its own zero-initialized
data.

The header is part of the image itself. Code in the header ensures that the
image is properly prepared for execution before being entered at its entry
address.

The fourth word of an executable AIF header is:

BL entrypoint

The most significant byte of this word (in the target byte order) is 0xeb.

The base address of an executable AIF image is the address at which its
header should be loaded. Its code starts at base + 0x80.

Non-executable AIF
Non-executable AIF must be processed by an image loader that loads the
image at its load address and prepares it for execution as detailed in the
AIF header. The header is then discarded. The header is not part of the
image, it only describes the image.

The fourth word of a non-executable AIF image is the offset of its entry
point from its base address. The most significant nibble of this word (in
the target byte order) is 0x0.

The base address of a non-executable AIF image is the address at which
its code should be loaded.

Extended AIF
Extended AIF is a special type of non-executable AIF. It contains a
scatter-loaded image. It has an AIF header that points to a chain of load
region descriptors within the file. The image loader should place each
region at the location in memory specified by the load region descriptor.

ARM Image Format

13-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

13.3 The layout of AIF

This section describes the layout of AIF images.

13.3.1 AIF image layout

An AIF image has the following layout:

• Header

• Read-only area

• Read-write area

• Debugging data (optional)

• Self-relocation code (position-independent)

• Relocation list. This is a list of byte offsets from the beginning of the AIF header,
of words to be relocated, followed by a word containing -1. The relocation of
non-word values is not supported.

Note

An AIF image is restartable if, and only if, the program it contains is restartable (an AIF
image is not reentrant). Following self-relocation, the second word of the header must
be reset to NOP. This causes no additional problems with the read-only nature of the
code section.

On systems with memory protection, the self-relocation code must be bracketed by
system calls to change the access status of the read-only section (first to writable, then
back to read-only).

13.3.2 Debugging data

After the execution of the self-relocation code, or if the image is not self-relocating, the
image has the following layout:

• Header

• Read-only area

• Read-write area

• Debugging data (optional).

AIF images support being debugged by an ARM debugger. Low-level and source-level
support are orthogonal. An AIF image can have both, either, or neither kind of
debugging support.

References from debugging tables to code and data are in the form of relocatable
addresses. After loading an image at its load address these values are effectively
absolute.

ARM Image Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-5

References between debugger table entries are in the form of offsets from the beginning
of the debugging data area. Following relocation of a whole image, the debugging data
area itself is position-independent and may be copied or moved by the debugger.

13.3.3 AIF header

Table 13-1 shows the layout of the AIF header.

 Table 13-1 AIF header layout

00: NOPa

04: BL SelfRelocCode NOP if the image is not self-relocating

08: BL ZeroInit NOP if the image has none.

0C: BL ImageEntryPoint or
EntryPoint Offset

BL to make the header addressable via r14 ...but the
application will not return... Non-executable AIF uses an
offset, not BL.
BL is used to make the header addressable via r14 in a
position-independent manner, and to ensure that the
header will be position-independent.

10: Program Exit Instruction … last attempt in case of return. The Program Exit
Instruction is usually a SWI causing program
termination. On systems that do not implement a SWI for
this purpose, a branch-to-self is recommended.
Applications are expected to exit directly and not to
return to the AIF header, so this instruction should never
be executed. The ARM linker sets this field to SWI 0x11
by default, but it may be set to any desired value by
providing a template for the AIF header in an area called
AIF_HDR in the first object file in the input list to
armlink.

14: Image ReadOnly size Image ReadOnly Size includes the size of the AIF header
only if the AIF type is executable (that is, if the header
itself is part of the image).

18: Image ReadWrite size Exact size (a multiple of 4 bytes).

1C: Image Debug size Exact size (a multiple of 4 bytes). Includes high-level
and low-level debug size. Bits 0-3 hold the type. Bits
4-31 hold the low level debug size.

20: Image zero-init size Exact size (a multiple of 4 bytes).

ARM Image Format

13-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

24: Image debug type Valid values for Image debug type are:
0 No debugging data present.
1 Low-level debugging data present.
2 Source level debugging data present.
3 1 and 2 are present together.
All other values of image debug type are reserved.

28: Image base Address where the image (code) was linked.

2C: Work space Obsolete.

30: Address mode: 26/32 +
3 flag bytes

The word at offset 0x30 is 0, or contains in its least
significant byte (using the byte order appropriate to the
target):
26 Indicates that the image was linked for a

26-bit ARM mode, and may not execute
correctly in a 32-bit mode. This is
obsolete.

32 Indicates that the image was linked for a
32-bit ARM mode, and may not execute
correctly in a 26-bit mode.

A value of 0 indicates an old-style 26-bit AIF header.
If the Address mode word has bit 8 set, the image was
linked with separate code and data bases (usually the
data is placed immediately after the code). The word at
offset 0x34 contains the base address of the image’s data.

34: Data base Address where the image data was linked.

38: Two reserved words
(initially 0)

In Extended AIF images, the word at 0x38 is non-zero. It
contains the byte offset within the file of the header for
the first non-root load region. This header has a size of
44 bytes, and the following format:
word 0 file offset of header of next region (0 is

none)
word 1 load address
word 2 size in bytes (a multiple of 4)
char[32] the region name padded out with zeros.
The initializing data for the region follows the header.

40: NOP

44: Zero-init code 15 words
as below

Header is 32 words long.

a. In all cases, NOP is encoded as MOV r0,r0

 Table 13-1 AIF header layout (Continued)

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 14-1

Chapter 14
ARM Object Library Format

This chapter describes the ARM Object Library Format (ALF). It contains the following
sections:

• Overview of ARM Object Library Format on page 14-2

• Endianness and alignment on page 14-3

• Library file format on page 14-4

• Time stamps on page 14-7

• Object code libraries on page 14-8.

ARM Object Library Format

14-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

14.1 Overview of ARM Object Library Format

This section defines a file format called ARM Object Library Format (ALF), that is used
by the ARM linker and the ARM object librarian.

A library file contains a number of separate but related pieces of data. In order to
simplify access to these data, and to provide for a degree of extensibility, the library file
format is itself layered on another format called Chunk File Format. This provides a
simple and efficient means of accessing and updating distinct chunks of data within a
single file. Refer to Chunk file format on page 15-4 for a description of the Chunk File
Format.

The Library format defines four chunk classes:

• Directory

• Time stamp

• Version

• Data.

There may be many Data chunks in a library.

The Object Library Format defines two additional chunks:

• Symbol table

• Symbol table time stamp.

ARM Object Library Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 14-3

14.2 Endianness and alignment

For data in a file, address means offset from the start of the file.

There is no guarantee that the endianness of an ALF file will be the same as the
endianness of the system used to process it (the endianness of the file is always the same
as the endianness of the target ARM system).

The two sorts of ALF cannot meaningfully be mixed (the target system cannot have
mixed endianness, it must have one or the other). The ARM linker accepts inputs of
either sex and produces an output of the same sex, but rejects inputs of mixed
endianness.

14.2.1 Alignment

Strings and bytes may be aligned on any byte boundary.

ALF fields defined in this document do not use halfwords, and align words on 4-byte
boundaries.

Within the contents of an ALF file (within the data contained in OBJ_AREA chunks, see
below), the alignment of words and halfwords is defined by the use to which ALF is
being put. For all current ARM-based systems, alignment is strict.

ARM Object Library Format

14-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

14.3 Library file format

For library files, the first part of each chunk name is LIB_. For object libraries, the
names of the additional two chunks begin with OFL_.

Each piece of a library file is stored in a separate, identifiable chunk. Table 14-1 shows
the chunk names.

There may be many LIB_DATA chunks in a library, one for each library member. In all
chunks, word values are stored with the same byte order as the target system. Strings
are stored in ascending address order, which is independent of target byte order.

14.3.1 Earlier versions of ARM object library format

These notes ensure maximum robustness with respect to earlier, now obsolete, versions
of the ARM object library format:

• Applications which create libraries or library members should ensure that the
LIB_DIRY entries they create contain valid time stamps.

• Applications which read LIB_DIRY entries should not rely on any data beyond
the end of the name string being present, unless the difference between the
DataLength field and the name-string length allows for it. Even then, the contents
of a time stamp should be treated cautiously.

• Applications which write LIB_DIRY or OFL_SYMT entries should ensure that
padding is done with NULL (0) bytes. Applications that read LIB_DIRY or
OFL_SYMT entries should make no assumptions about the values of padding bytes
beyond the first, string-terminating NULL byte.

 Table 14-1 Library File Chunks

Chunk Chunk name

Directory LIB_DIRY

Time stamp LIB_TIME

Version LIB_VRSN

Data LIB_DATA

Symbol table OFL_SYMT object code

Time stamp OFL_TIME object code

ARM Object Library Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 14-5

14.3.2 LIB_DIRY

The LIB_DIRY chunk contains a directory of the modules in the library, each of which
is stored in a LIB_DATA chunk. The directory size is fixed when the library is created.
The directory consists of a sequence of variable length entries, each an integral number
of words long. The number of directory entries is determined by the size of the
LIB_DIRY chunk. Table 14-2 shows the layout.

where:

ChunkIndex is a word containing the zero-origin index within the chunk file
header of the corresponding LIB_DATA chunk. Conventionally,
the first three chunks of an OFL file are LIB_DIRY, LIB_TIME
and LIB_VRSN, so ChunkIndex is at least 3. A ChunkIndex of 0
means the directory entry is unused.

The corresponding LIB_DATA chunk entry gives the offset and
size of the library module in the library file.

EntryLength is a word containing the number of bytes in this LIB_DIRY entry,
always a multiple of 4.

DataLength is a word containing the number of bytes used in the data section
of this LIB_DIRY entry, also a multiple of 4.

Data consists of, in order:

• a zero-terminated string (the name of the library member).
Strings should contain only ISO-8859 non-control
characters (codes [0-31], 127 and 128+[0-31] are excluded).
The string field is the name used to identify this library
module. Typically it is the name of the file from which the
library member was created.

• any other information relevant to the library module (often
empty).

 Table 14-2 The LIB_DIRY chunk

ChunkIndex

EntryLength The size of this LIB_DIRY chunk (an integral number of words).

DataLength The size of the Data (an integral number of words).

Data

ARM Object Library Format

14-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

• a two-word, word-aligned time stamp. The format of the
time stamp is described in Time stamps on page 14-7. Its
value is an encoded version of the last-modified time of the
file from which the library member was created.

14.3.3 LIB_VRSN

The version chunk contains a single word whose value is 1.

14.3.4 LIB_DATA

A LIB_DATA chunk contains one of the library members indexed by the LIB_DIRY
chunk. The endianness or byte order of this data is, by assumption, the same as the byte
order of the containing library/chunk file.

No other interpretation is placed on the contents of a member by the library
management tools. A member could itself be a file in chunk file format or even another
library.

ARM Object Library Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 14-7

14.4 Time stamps

A library time stamp is a pair of words that encode:

• a six byte count of centiseconds since 00:00:00 1st January 1900

• a two byte count of microseconds since the last centisecond.

First (most significant) word
Contains the most significant 4 bytes of the 6 byte centisecond count.

Second (least significant) word
Contains the least significant two bytes of the six byte centisecond count
in the most significant half of the word and the two byte count of
microseconds since the last centisecond in the least significant half of the
word. This is usually 0.

Time stamp words are stored in target system byte order. They must have the same
endianness as the containing chunk file.

14.4.1 LIB_TIME

The LIB_TIME chunk contains a two-word (eight-byte) time stamp recording when the
library was last modified.

ARM Object Library Format

14-8 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

14.5 Object code libraries

An object code library is a library file whose members are files in ARM Object Format.
An object code library contains two additional chunks:

• an external symbol table chunk named OFL_SYMT

• a time stamp chunk named OFL_TIME.

14.5.1 OFL_SYMT

The external symbol table contains an entry for each external symbol defined by
members of the library, together with the index of the chunk containing the member
defining that symbol.

The OFL_SYMT chunk has exactly the same format as the LIB_DIRY chunk except that
the Data section of each entry contains only a string, the name of an external symbol,
and between one and four bytes of NULL padding, as follows:

OFL_SYMT entries do not contain time stamps.

14.5.2 OFL_TIME

The OFL_TIME chunk records when the OFL_SYMT chunk was last modified and has the
same format as the LIB_TIME chunk (see Time stamps on page 14-7).

 Table 14-3 OFL_SYMT chunk layout

ChunkIndex

EntryLength The size of this OFL_SYMT chunk (an integral number of words).

DataLength The size of the External Symbol Name and Padding (an integral
number of words).

External Symbol Name

Padding

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-1

Chapter 15
ARM Object Format

This chapter describes the ARM Object Format. It contains the following sections:

• ARM Object Format on page 15-2

• Overall structure of an AOF file on page 15-4

• The AOF header chunk (OBJ_HEAD) on page 15-7

• The AREAS chunk (OBJ_AREA) on page 15-13

• Relocation directives on page 15-14

• Symbol Table Chunk Format (OBJ_SYMT) on page 15-17

• The String Table Chunk (OBJ_STRT) on page 15-21

• The Identification Chunk (OBJ_IDFN) on page 15-22.

ARM Object Format

15-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

15.1 ARM Object Format

This section describes the ARM Object Format (AOF).

The following terms apply throughout this section:

object file refers to a file in ARM Object Format.

address for data in a file, this means offset from the start of the file.

15.1.1 Areas

An object file written in AOF consists of any number of named, attributed areas.
Attributes include:

• read-only

• reentrant

• code

• data

• position-independent.

For details see Attributes and alignment on page 15-9.

Typically, a compiled AOF file contains a read-only code area, and a read-write data
area (a zero-initialized data area is also common, and reentrant code uses a separate
based area for address constants).

15.1.2 Relocation directives

Associated with each area is a (possibly empty) list of relocation directives which
describe locations that the linker will have to update when:

• a non-zero base address is assigned to the area

• a symbolic reference is resolved.

Each relocation directive may be given relative to the (not yet assigned) base address of
an area in the same AOF file, or relative to a symbol in the symbol table. Each symbol
may:

• have a definition within its containing object file which is local to the object file

• have a definition within the object file which is visible globally (to all object files
in the link step)

• be a reference to a symbol defined in some other object file.

ARM Object Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-3

15.1.3 Byte sex or endianness

An AOF file can be produced in either little-endian or big-endian format.

There is no guarantee that the endianness of an AOF file will be the same as the
endianness of the system used to process it (the endianness of the file is always the same
as the endianness of the target ARM system).

15.1.4 Alignment

Strings and bytes may be aligned on any byte boundary. AOF fields defined in this
document make no use of halfwords and align words on 4-byte boundaries.

Within the contents of an AOF file, the alignment of words and halfwords is defined by
the use to which AOF is being put. For all current ARM-based systems, words are
aligned on 4-byte boundaries and halfwords on 2-byte boundaries.

ARM Object Format

15-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

15.2 Overall structure of an AOF file

An AOF file contains a number of separate pieces of data. To simplify access to the data,
and to give a degree of extensibility to tools which process AOF, the object file format
is itself layered on another format called Chunk File Format, which provides a simple
and efficient means of accessing and updating distinct chunks of data within a single
file.

15.2.1 Chunk file format

A file written in chunk file format consists of a header, and one or more chunks. The
header is always positioned at the beginning of the file. A chunk is accessed through the
header. The header contains the number, size, location, and identity of each chunk in the
file.

The size of the header may vary between different chunk files, but it is fixed for each
file. Not all entries in a header need be used, thus limited expansion of the number of
chunks is permitted without a wholesale copy. A chunk file can be copied without
knowledge of the contents of its chunks.

Chunk file header

The chunk file header consists of two parts:

• the first part is a fixed length part of three words

• the second part contains a four word entry for each chunk in the file.

The first part of the header contains the following three word sized fields:

ChunkFileId Marks the file as a chunk file. Its value is 0xC3CBC6C5. The
endianness of the chunk file can be determined from this value (if
it appears to be 0xC5C6CBC3 when read as a word, each word
value must be byte-reversed before use).

max_chunks Defines the number of the entries in the header, fixed when the file
is created.

num_chunks Defines how many chunks are currently used in the file, which can
vary from 0 to max_chunks. It is redundant in that it can be found
by scanning the entries.

The second part of the header contains a four word entry for each chunk in the file. The
number of entries is given by the num_chunks field in the first part of the header.

ARM Object Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-5

chunkId Is an 8-byte field identifying what data the chunk contains. Note
that this is an 8-byte field, not a 2-word field, so it has the same
byte order independent of endianness.

file_offset Is a one-word field defining the byte offset within the file of the
start of the chunk. All chunks are word-aligned, so it must be
divisible by four. A value of zero indicates that the chunk entry is
unused.

size Is a one-word field defining the exact byte size of the chunk’s
contents (which need not be a multiple of four).

Identifying data types

The chunkId field provides a conventional way of identifying what type of data a
chunk contains. It has eight characters, and is split into two parts:

• the first four characters contain a unique name allocated by a central authority

• the remaining four characters can be used to identify component chunks within
this domain.

The eight characters are stored in ascending address order, as if they formed part of a
NULL-terminated string, independent of endianness.

For AOF files, the first part of each chunk name is OBJ_. The second components are
defined in the following section.

ARM Object Format

15-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

15.2.2 ARM object format

Each piece of an object file is stored in a separate, identifiable chunk. AOF defines five
chunks as shown in Table 15-1.

Only the AOF Header and AREAS chunks must be present, but a typical object file
contains all five of the above chunks.

Each name in an object file is encoded as an offset into the string table, stored in the
OBJ_STRT chunk The String Table Chunk (OBJ_STRT) on page 15-21. This allows the
variable-length nature of names to be factored out from primary data formats.

A feature of ARM Object Format is that chunks may appear in any order in the file (for
example, the ARM C compiler and the ARM assembler produce their AOF chunks in
different orders).

A language translator or other utility may add additional chunks to an object file, for
example, a language-specific symbol table or language-specific debugging data.
Therefore it is conventional to allow space in the chunk header for additional chunks.
Space for eight chunks is conventional when the AOF file is produced by a language
processor which generates all five chunks described here.

Note

The AOF header chunk should not be confused with the chunk file header.

 Table 15-1 AOF chunks

Chunk Chunk name

AOF Header OBJ_HEAD

Areas OBJ_AREA

Identification OBJ_IDFN

Symbol Table OBJ_SYMT

String Table OBJ_STRT

ARM Object Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-7

15.3 The AOF header chunk (OBJ_HEAD)

The AOF header consists of two contiguous parts:

• the first part is a fixed size part of six words that describes the contents and nature
of the object file.

• the second part has a variable length (specified in the first part of the header), and
consists of a sequence of area headers describing the areas within the OBJ_AREA
chunk.

Part one contains the following word sized fields:

Object File Type
The value 0xC5E2D080 marks the file as being in relocatable object
format (the usual output of compilers and assemblers and the usual input
to the linker). The endianness of the object code can be deduced from this
value and must be identical to the endianness of the containing chunk file.

Version Id
Encodes the AOF version number. The current version number is 310
(0x136).

Number of Areas
The code and data of an object file are encapsulated in a number of
separate areas in the OBJ_AREA chunk, each with a name and some
attributes (see Attributes and alignment on page 15-9).

Each area is described in the variable-length part of the AOF header
which immediately follows the fixed part. Number_of_Areas gives the
number of areas in the file and, equivalently, the number of AREA
declarations that follow the fixed part of the AOF header.

Number of Symbols
If the object file contains a symbol table chunk (named OBJ_SYMT),
Number of Symbols records the number of symbols in the symbol
table.

One of the areas in an object file may be designated as containing the start
address of any program which is linked to include the file. If this is the
case, the entry address is specified as an Entry Area Index, Entry
Offset pair.

Entry Area Index
Entry Area Index, in the range 1 to Number of Areas, gives the
1-origin index in the following array of area headers of the area
containing the entry point.

ARM Object Format

15-8 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

A value of 0 for Entry Area Index signifies that no program entry
address is defined by this AOF file.

Entry Offset
The entry address is defined to be the base address of the entry area plus
Entry Offset.

Part two of the AOF header consists of a sequence of area headers. Each area header is
five words long, and contains the following word length fields:

Area Name Gives the offset of that name in the string table (stored in the OBJ_STRT
chunk. Each area within an object file must be given a unique name. See
The String Table Chunk (OBJ_STRT) on page 15-21.

Attributes and Alignment
This word contains bit flags that specify the attributes and alignment of
the area. The details are given in Alignment on page 15-3.

Area Size Gives the size of the area in bytes. This value must be a multiple of 4.
Unless the Not Initialised bit (bit 12) is set in the area attributes
(see Attributes and alignment on page 15-9), there must be this number
of bytes for this area in the OBJ_AREA chunk. If the Not Initialised
bit is set, there must be no initializing bytes for this area in the OBJ_AREA
chunk.

Number of Relocations
Specifies the number of relocation directives that apply to this area
(which is equivalent to the number of relocation records following the
contents of the area in the OBJ_AREA chunk. See The AREAS chunk
(OBJ_AREA) on page 15-13).

Base Address
Is unused unless the area has the absolute attribute. In this case, the field
records the base address of the area. In general, giving an area a base
address prior to linking will cause problems for the linker and may
prevent linking altogether, unless only a single object file is involved.

An unused Base Address is denoted by the value 0.

ARM Object Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-9

15.3.1 Attributes and alignment

Each area has a set of attributes encoded in the most significant 24 bits of the
Attributes + Alignment word. The least significant eight bits of this word encode
the alignment of the start of the area as a power of 2 and must have a value between 2

and 32 (this value denotes that the area should start at an address divisible by 2alignment).
Table 15-2 gives a summary of the attributes.

Some combinations of attributes are meaningless, for example, read-only and
zero-initialized.

The linker orders areas in a generated image in the following order:

• by attributes

• by the (case-significant) lexicographic order of area names

• by position of the containing object module in the link list.

 Table 15-2 Area attributes summary

Bit Mask Attribute Description

8
9
10
11
12
13
14
15

0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000
0x00004000
0x00008000

Absolute attribute
Code attribute
Common block definition
Common block reference
Uninitialized (zero-initialized)
Read-only
Position independent
Debugging tables

16
17
18
19
20
21
22

0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000

Code areas only
Complies with the 32-bit APCS
reentrant code
Uses extended FP instruction set
No software stack checking
All relocations are of Thumb code
Area may contain ARM halfword instructions
Area suitable for ARM/Thumb interworking

ARM Object Format

15-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

The position in the link list of an object module loaded from a library is not predictable.
The precise significance to the linker of area attributes depends on the output being
generated.

Bit 8 Encodes the absolute attribute and denotes that the area must be placed
at its Base Address. This bit is not usually set by language processors.

Bit 9 Encodes the code attribute:

1 Indicates code in the area.

0 Indicates data in the area.

Bit 10 Specifies that the area is a common definition.

Common areas with the same name are overlaid on each other by the
linker. The Area Size field of a common definition area defines the size
of a common block. All other references to this common block must
specify a size which is smaller than or equal to the definition size.

If, in a link step, there is more than one definition of an area with the
common definition attribute (area of the given name with bit 10 set), each
of these areas must have exactly the same contents. If there is no
definition of a common area, its size will be the size of the largest
common reference to it.

Although common areas conventionally hold data, you can use bit 10 in
conjunction with bit 9 to define a common block containing code. This is
useful for defining a code area which must be generated in several
compilation units, but which should be included in the final image only
once.

Bit 11 Defines the area to be a reference to a common block, and precludes the
area having initializing data (see Bit 12). In effect, bit 11 implies bit 12.
If both bits 10 and 11 are set, bit 11 is ignored.

Bit 12 Encodes the zero-initialized attribute, specifying that the area has no
initializing data in this object file, and that the area contents are missing
from the OBJ_AREA chunk.

Typically, this attribute is given to large municipalized data areas. When
a municipalized area is included in an image, the linker either includes a
read-write area of binary zeros of appropriate size, or maps a read-write
area of appropriate size that will be zeroed at image startup time. This
attribute is incompatible with the read-only attribute (see Bit 13, below).

Whether or not a zero-initialized area is re-zeroed if the image is
re-entered is a property of the relevant image format and/or the system on
which it will be executed. The definition of AOF neither requires nor
precludes re-zeroing.

ARM Object Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-11

A combination of bit 10 (common definition) and bit 12 (zero-initialized)
has exactly the same meaning as bit 11 (reference to common).

Bit 13 Encodes the read only attribute and denotes that the area will not be
modified following relocation by the linker. The linker groups read-only
areas together so that they may be write-protected at runtime, hardware
permitting. Code areas and debugging tables must have this bit set. The
setting of this bit is incompatible with the setting of bit 12.

Bit 14 Encodes the position independent (PI) attribute, usually only of
significance for code areas. Any reference to a memory address from a PI
area must be in the form of a link-time-fixed offset from a base register
(for example, a pc-relative branch offset).

Bit 15 Encodes the debugging table attribute and denotes that the area contains
symbolic debugging tables. The linker groups these areas together so they
can be accessed as a single continuous chunk at or before runtime
(usually, a debugger extracts its debugging tables from the image file
prior to starting the debuggee). Usually, debugging tables are read-only
and, therefore, have bit 13 set also. In debugging table areas, bit 9 (the
code attribute) is ignored.

Bits 16-22 encode additional attributes of code areas and must be non-zero only if the
area has the code attribute (bit 9) set. Bits 20-22 can be non-zero for data areas.

Bit 16 Encodes the 32-bit PC attribute, and denotes that code in this area
complies with a 32-bit variant of the APCS.

Bit 17 Encodes the reentrant attribute, and denotes that code in this area
complies with a reentrant variant of the APCS.

Bit 18 When set, denotes that code in this area uses the ARM floating-point
instruction set. Specifically, function entry and exit use the LFM and SFM
floating-point save and restore instructions rather than multiple LDFEs
and STFEs. Code with this attribute may not execute on older ARM-based
systems.

Bit 19 Encodes the No Software Stack Check attribute, denoting that code in this
area complies with a variant of the APCS without software stack-limit
checking.

Bit 20 Indicates that this area is a Thumb code area.

Bit 21 Indicates that this area may contain ARM halfword instructions. This bit
is set by armcc when compiling code for a processor with halfword
instructions such as the ARM7TDMI.

ARM Object Format

15-12 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Bit 22 Indicates that this area has been compiled to be suitable for ARM/Thumb
interworking. See the ARM Software Development Toolkit User Guide.

Bits 23 to 31 Are reserved and are set to 0.

ARM Object Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-13

15.4 The AREAS chunk (OBJ_AREA)

The AREAs chunk contains the actual area contents, such as code, data, debugging data,
together with their associated relocation data. An area is simply a sequence of bytes.
The endianness of the words and halfwords within it must agree with that of the
containing AOF file. An area layout is:

Area 1
Area 1 Relocation
...
Area n
Area n Relocation

An area is followed by its associated table of relocation directives (if any). An area is
either completely initialized by the values from the file or is initialized to zero, as
specified by bit 12 of its area attributes. Both area contents and table of relocation
directives are aligned to 4-byte boundaries.

ARM Object Format

15-14 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

15.5 Relocation directives

A relocation directive describes a value which is computed at link time or load time, but
which cannot be fixed when the object module is created.

In the absence of applicable relocation directives, the value of a byte, halfword, word or
instruction from the preceding area is exactly the value that will appear in the final
image.

A field may be subject to more than one relocation.

Figure 15-1 shows a relocation directive.

 Figure 15-1 Relocation directive

Offset is the byte offset in the preceding area of the subject field to be relocated by a
value calculated as described below.

The interpretation of the 24-bit SID field depends on the value of the A bit (bit 27):

A=1 The subject field is relocated (as further described below) by the value of
the symbol of which SID is the zero-origin index in the symbol table
chunk.

A=0 The subject field is relocated (as further described below) by the base of
the area of which SID is the zero-origin index in the array of areas, (or,
equivalently, in the array of area headers).

The two-bit field type FT (bits 25, 24) describes the subject field:

00 the field to be relocated is a byte.

01 the field to be relocated is a halfword (two bytes).

10 the field to be relocated is a word (four bytes).

11 the field to be relocated is an instruction or instruction sequence.

If bit 0 of the relocation offset is set, this identifies a Thumb instruction
sequence, otherwise it is taken to be an ARM instruction sequence.

Bytes, halfwords and instructions may only be relocated by values of small size.
Overflow is faulted by the linker.

������

���	
���
��

 � � � ��

ARM Object Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-15

An ARM branch or branch-with-link instruction is always a suitable subject for a
relocation directive of field type instruction. For details of other relocatable instruction
sequences, refer to 3.6 Handling Relocation Directives on page 3-16.

If the subject field is an instruction sequence, the address in Offset points to the first
instruction of the sequence, and the II field (bits 29 and 30) constrains how many
instructions may be modified by this directive:

00 no constraint (the linker may modify as many contiguous instructions as
it needs to).

01 the linker will modify at most 1 instruction.

10 the linker will modify at most 2 instructions.

11 the linker will modify at most 3 instructions.

The R (pc-relative) bit, modified by the B (based) bit, determines how the relocation
value is used to modify the subject field:

R (bit 26) = 0 and B (bit 28) = 0
This specifies plain additive relocation. The relocation value is added to
the subject field. In pseudo code:

subject_field = subject_field + relocation_value

R (bit 26) = 1 and B (bit 28) = 0
This specifies pc-relative relocation. To the subject field is added the
difference between the relocation value and the base of the area
containing the subject field. In pseudo code:

subject_field =
subject_field +
(relocation_value-base_of_area_containing(subject_fie
ld))

As a special case, if A is 0, and the relocation value is specified as the base
of the area containing the subject field, it is not added and:

subject_field =
subject_field - base_of_area_containing(subject_field)

This caters for relocatable pc-relative branches to fixed target addresses.

If R is 1, B is usually 0. A B value of 1 is used to denote that the
inter-link-unit value of a branch destination is to be used, rather than the
more usual intra-link-unit value.

ARM Object Format

15-16 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

R (bit 26) = 0 and B (bit 28) = 1
This specifies based area relocation. The relocation value must be an
address within a based data area. The subject field is incremented by the
difference between this value and the base address of the consolidated
based area group (the linker consolidates all areas based on the same base
register into a single, contiguous region of the output image).

In pseudo code:

subject_field =
subject_field +
(relocation_value -
base_of_area_group_containing(relocation_value))

For example, when generating reentrant code, the C compiler places
address constants in an address constant area based on register sb, and
loads them using sb-relative LDR instructions. At link time, separate
address constant areas will be merged and sb will no longer point where
presumed at compile time. B type relocation of the LDR instructions
corrects for this.

Bits 29 and 30 of the relocation flags word must be 0. Bit 31 must be 1.

ARM Object Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-17

15.6 Symbol Table Chunk Format (OBJ_SYMT)

The Number of Symbols field in the fixed part of the AOF header (OBJ_HEAD chunk)
defines how many entries there are in the symbol table. Each symbol table entry is four
words long and contains the following word length fields:

Name Is the offset in the string table (in chunk OBJ_STRT) of the character
string name of the symbol.

Attributes
Are summarized in Table 15-2. Refer to Symbol attributes on page 15-18
for a full description of the attributes.

Value Is meaningful only if the symbol is a defining occurrence (bit 0 of
Attributes set), or a common symbol (bit 6 of Attributes set):

• if the symbol is absolute (bits 0-2 of Attributes set), this field
contains the value of the symbol

• if the symbol is a common symbol (bit 6 of Attributes set), this
contains the byte length of the referenced common area.

• otherwise, Value is interpreted as an offset from the base address
of the area named by Area Name, which must be an area defined
in this object file.

Area Name Is meaningful only if the symbol is a non-absolute defining occurrence
(bit 0 of Attributes set, bit 2 unset). In this case it gives the index into
the string table for the name of the area in which the symbol is defined
(which must be an area in this object file).

ARM Object Format

15-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

15.6.1 Symbol attributes

Table 15-3 summarizes the symbol attributes.

The Symbol Attributes word is interpreted as follows:

Bit 0 Denotes that the symbol is defined in this object file.

Bit 1 Denotes that the symbol has global scope and can be matched by the
linker to a similarly named symbol from another object file.

01 Bit 1 unset, bit 0 set. Denotes that the symbol is defined in this
object file and has scope limited to this object file (when
resolving symbol references, the linker will only match this
symbol to references from within the same object file).

10 Bit 1 set, bit 0 unset. Denotes that the symbol is a reference to
a symbol defined in another object file. If no defining instance
of the symbol is found, the linker attempts to match the name
of the symbol to the names of common blocks. If a match is
found, it is as if an identically-named symbol of global scope
were defined, taking its value from the base address of the
common area.

11 Denotes that the symbol is defined in this object file with
global scope (when attempting to resolve unresolved
references, the linker will match this definition to a reference
from another object file).

00 Is reserved.

 Table 15-3 Symbol attributes

Bit Mask Attribute description

0
1
2
3
4
6

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000040

Symbol is defined in this file
Symbol has a global scope
Absolute attribute
Case-insensitive attribute
Weak attribute
Common attribute

8
9
12

0x00000100
0x00000200
0x00001000

Code symbols only:
Code area datum attribute
FP args in FP regs attribute
Thumb symbol

ARM Object Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-19

Bit 2 Encodes the absolute attribute which is meaningful only if the symbol is
a defining occurrence (bit 0 set). If set, it denotes that the symbol has an
absolute value, for example, a constant. If unset, the symbol value is
relative to the base address of the area defined by the Area Name field of
the symbol.

Bit 3 Encodes the case insensitive reference attribute which is meaningful only
if the symbol is an external reference (bits 1, 0 = 10). If set, the linker will
ignore the case of the symbol names it tries to match when attempting to
resolve this reference.

Bit 4 Encodes the weak attribute which is meaningful only if the symbol is an
external reference (bits 1, 0 = 10). It denotes that it is acceptable for the
reference to remain unsatisfied and for any fields relocated via it to
remain unrelocated. The linker ignores weak references when deciding
which members to load from an object library.

Bit 5 Is reserved and must be set to 0.

Bit 6 Encodes the common attribute, which is meaningful only if the symbol
is an external reference (bits 1, 0 = 10). If set, the symbol is a reference
to a common area with the symbol’s name. The length of the common
area is given by the symbol’s Value field (see above). The linker treats
common symbols much as it treats areas having the Common Reference
attribute. All symbols with the same name are assigned the same base
address, and the length allocated is the maximum of all specified lengths.

If the name of a common symbol matches the name of a common area,
these are merged and the symbol identifies the base of the area.

All common symbols for which there is no matching common area
(reference or definition) are collected into an anonymous, linker-created,
pseudo-area.

Bit 7 Is reserved and must be set to 0.

Bits 8-11 encode additional attributes of symbols defined in code areas.

Bit 8 Encodes the code datum attribute which is meaningful only if this
symbol defines a location within an area having the Code attribute. It
denotes that the symbol identifies a (usually read-only) datum, rather
than an executable instruction.

Bit 9 Encodes the floating-point arguments in floating-point registers attribute.
This is meaningful only if the symbol identifies a function entry point. A
symbolic reference with this attribute cannot be matched by the linker to
a symbol definition which lacks the attribute.

ARM Object Format

15-20 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Bit 10 Is reserved and must be set to 0.

Bit 11 Is reserved and must be set to 0.

Bit 12 The Thumb attribute. This is set if the symbol is a Thumb symbol.

ARM Object Format

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-21

15.7 The String Table Chunk (OBJ_STRT)

The string table chunk contains all the print names referred to from the header and
symbol table chunks. This separation is made to factor out the variable length
characteristic of print names from the key data structures.

A print name is stored in the string table as a sequence of non-control characters (codes
32-126 and 160-255) terminated by a NULL (0) byte, and is identified by an offset from
the start of the table. The first four bytes of the string table contain its length (including
the length of its length word), so no valid offset into the table is less than four, and no
table has length less than four.

The endianness of the length word must be identical to the endianness of the AOF and
chunk files containing it.

ARM Object Format

15-22 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

15.8 The Identification Chunk (OBJ_IDFN)

This chunk should contain a string of printable characters (codes 10-13 and 32-126)
terminated by a NULL (0) byte, which gives information about the name and version of
the tool which generated the object file.

Use of codes in the range 128-255 is discouraged, as the interpretation of these values
is host-dependent.

