Chapter 13
ARM Image Format

This chapter describes the ARM Image Format (AlF). It contains the following
sections:

. Overview of the ARM Image Format on page 13-2
. AIF variants on page 13-3
. The layout of AIF on page 13-4.

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-1

ARM Image Format

13.1 Overview of the ARM Image Format

ARM Image Format (AIF) isasimple format for ARM executable images, consisting
of:

. a 128-byte header
. the image code
. theimage initialized static data.

An AlF imageis capable of self-relocation if it is created with the appropriate linker
options. Theimage can beloaded anywhere and it will executewhereit isloaded. After
an AlF image has been relocated, it can create its own zero-initialized area. Finally, the
image is entered at the unique entry point.

13-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

13.2 AIF variants

ARM Image Format

There are three variants of AlF;

Executable AIF

Executable AIF can be loaded at its |oad address and entered at the same
point (at thefirst word of the AIF header). It preparesitself for execution
by relocating itself if required and setting to zero its own zero-initialized
data.

The header is part of theimage itself. Code in the header ensures that the
imageis properly prepared for execution before being entered at its entry
address.

The fourth word of an executable AIF header is:

BL entrypoi nt

The most significant byte of thisword (in the target byte order) is Oxeb.

The base address of an executable AIF image is the address at which its
header should be loaded. Its code starts at base + 0x80.

Non-executable Al F

Non-executable AlIF must be processed by animage loader that loadsthe
image at itsload address and prepares it for execution as detailed in the
AlF header. The header is then discarded. The header is not part of the
image, it only describes the image.

The fourth word of a non-executable AIF imageisthe offset of its entry
point from its base address. The most significant nibble of thisword (in
the target byte order) is 0xO.

The base address of a non-executable AIF image is the address at which
its code should be |oaded.

Extended AIF

Extended AlF isaspecia type of non-executable AIF. It contains a
scatter-loaded image. It has an AlF header that points to a chain of load
region descriptors within the file. The image loader should place each
region at the location in memory specified by the load region descriptor.

ARM DUI 0041C

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-3

ARM Image Format

13.3 The layout of AIF

This section describes the layout of AIF images.

13.3.1 AlFimage layout

An AlF image has the following layout:

. Header

. Read-only area

. Read-write area

. Debugging data (optional)

. Self-relocation code (position-independent)

. Relocation list. Thisisalist of byte offsets from the beginning of the AIF header,
of words to be relocated, followed by aword containing - 1. The relocation of
non-word values is not supported.

Note

AnAlFimageisrestartableif, and only if, the program it containsisrestartable (an AIF
image is not reentrant). Following self-relocation, the second word of the header must
be reset to NOP. This causes no additional problems with the read-only nature of the
code section.

On systems with memory protection, the self-rel ocation code must be bracketed by
system calls to change the access status of the read-only section (first to writable, then
back to read-only).

13.3.2 Debugging data

After the execution of the self-relocation code, or if theimageis not self-relocating, the
image has the following layout:

. Header

. Read-only area

. Read-write area

. Debugging data (optional).

AlF images support being debugged by an ARM debugger. Low-level and source-level
support are orthogonal. An AlF image can have both, either, or neither kind of
debugging support.

References from debugging tables to code and data are in the form of relocatable
addresses. After loading an image at its load address these values are effectively
absolute.

13-4

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Image Format

References between debugger table entries arein the form of offsetsfrom the beginning
of the debugging data area. Following relocation of awholeimage, the debugging data
areaitself is position-independent and may be copied or moved by the debugger.

13.3.3 AIF header
Table 13-1 shows the layout of the AIF header.

Table 13-1 AIF header layout

00: NOP2
04: BL SelfRelocCode NOP if theimage is not self-relocating
08: BL Zerolnit NOP if the image has none.
0C. BL ImageEntryPoint or BL to make the header addressable viarl4 ...but the
EntryPoint Offset application will not return... Non-executable AIF uses an
offset, not BL.

BL is used to make the header addressable viarl4 in a
position-independent manner, and to ensure that the
header will be position-independent.

10: Program Exit Instruction ... last attempt in case of return. The Program Exit
Instruction isusually aSW causing program
termination. On systems that do not implement aSWI for
this purpose, a branch-to-self is recommended.
Applications are expected to exit directly and not to
return to the AIF header, so this instruction should never
be executed. The ARM linker setsthisfield to SWI 0x11
by default, but it may be set to any desired value by
providing atemplate for the AIF header in an area called
Al F_HDRinthefirst object filein the input list to
armlink.

14: Image ReadOnly size Image ReadOnly Sizeincludesthe size of the AlIF header
only if the AIF typeis executable (that is, if the header
itself is part of the image).

18: Image ReadWrite size Exact size (amultiple of 4 bytes).

1C: Image Debug size Exact size (amultiple of 4 bytes). Includes high-level
and low-level debug size. Bits 0-3 hold the type. Bits
4-31 hold the low level debug size.

20: Image zero-init size Exact size (amultiple of 4 bytes).

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 13-5

ARM Image Format

Table 13-1 AIF header layout (Continued)

24:

Image debug type

Valid vaues for Image debug type are:

0 No debugging data present.

1 Low-level debugging data present.

2 Source level debugging data present.
3 1 and 2 are present together.

All other values of image debug type are reserved.

28:

Image base

Address where the image (code) was linked.

2C:

Work space

Obsol ete.

30:

Address mode: 26/32 +
3flag bytes

The word at offset 0x30is 0, or containsin its least
significant byte (using the byte order appropriate to the
target):

26 Indicates that the image was linked for a
26-bit ARM mode, and may not execute
correctly in a 32-bit mode. Thisis
obsolete.

32 Indicates that the image was linked for a
32-bit ARM mode, and may not execute
correctly in a 26-bit mode.

A value of 0 indicates an old-style 26-bit AlIF header.

If the Address mode word has bit 8 set, the image was

linked with separate code and data bases (usually the

datais placed immediately after the code). The word at
offset 0x34 contains the base address of the image's data.

34.

Data base

Address where the image data was linked.

38:

Two reserved words
(initially 0)

In Extended AIF images, theword at 0x38 is hon-zero. It

contains the byte offset within the file of the header for

the first non-root load region. This header has a size of

44 bytes, and the following format:

word 0 file offset of header of next region (Ois
none)

word 1 load address

word 2 size in bytes (amultiple of 4)

char[32] the region name padded out with zeros.

The initializing data for the region follows the header.

40:

NOP

44.

Zero-init code 15 words

as below

Header is 32 words long.

a.

In all cases, NOP is encoded as MOV r0, r0

13-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 14
ARM Object Library Format

Thischapter describesthe ARM Object Library Format (ALF). It containsthefollowing
sections:

. Overview of ARM Object Library Format on page 14-2
. Endianness and alignment on page 14-3

. Library file format on page 14-4

. Time stamps on page 14-7

. Object code libraries on page 14-8.

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 14-1

ARM Object Library Format

14.1 Overview of ARM Object Library Format

Thissection definesafileformat called ARM Object Library Format (ALF), that isused
by the ARM linker and the ARM object librarian.

A library file contains a number of separate but related pieces of data. In order to
simplify accessto these data, and to provide for adegree of extensibility, thelibrary file
format isitself layered on another format called Chunk File Format. This provides a
simple and efficient means of accessing and updating distinct chunks of datawithin a
singlefile. Refer to Chunk file format on page 15-4 for a description of the Chunk File
Format.

The Library format defines four chunk classes:
. Directory

. Time stamp

. Version

. Data

There may be many Data chunksin alibrary.

The Object Library Format defines two additional chunks:
. Symbol table
. Symbal table time stamp.

14-2 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Library Format

14.2 Endianness and alignment

14.2.1 Alignment

For datain afile, address means offset from the start of the file.

There is no guarantee that the endianness of an ALF file will be the same as the
endianness of the system used to processit (the endianness of thefileisalwaysthe same
as the endianness of the target ARM system).

The two sorts of ALF cannot meaningfully be mixed (the target system cannot have
mixed endianness, it must have one or the other). The ARM linker accepts inputs of
either sex and produces an output of the same sex, but rejects inputs of mixed
endianness.

Strings and bytes may be aligned on any byte boundary.

ALF fields defined in this document do not use halfwords, and align words on 4-byte
boundaries.

Within the contents of an ALF file (within the data contained in OBJ_ AREA chunks, see
below), the alignment of words and halfwords is defined by the use to which ALF is
being put. For all current ARM-based systems, alignment is strict.

ARM DUI 0041C

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 14-3

ARM Object Library Format

14.3 Library file format

For library files, the first part of each chunk nameisLI B_. For object libraries, the
names of the additional two chunks begin with OFL _.

Each piece of alibrary fileisstored in a separate, identifiable chunk. Table 14-1 shows
the chunk names.

Table 14-1 Library File Chunks

Chunk Chunk name
Directory LIB_DIRY

Time stamp LIB_TIME

Version LIB_VRSN

Data LIB_DATA

Symbol table OFL_SYMT object code
Time stamp OFL_TIME object code

There may be many LI B_DATA chunksin alibrary, one for each library member. In all
chunks, word values are stored with the same byte order as the target system. Strings
are stored in ascending address order, which is independent of target byte order.

14.3.1 Earlier versions of ARM object library format

These notes ensure maximum robustness with respect to earlier, now obsol ete, versions
of the ARM object library format:

. Applications which create libraries or library members should ensure that the
LI B_DI RY entriesthey create contain valid time stamps.

. Applicationswhich read LI B_DI RY entries should not rely on any data beyond
the end of the name string being present, unless the difference between the
Datal ength field and the name-string length allowsfor it. Even then, the contents
of atime stamp should be treated cautiously.

. Applications which write LI B_DI RY or OFL_SYMT entries should ensure that
padding is done with NULL (0O) bytes. Applicationsthat read LI B_DI RY or
OFL_SYM entries should make no assumptions about the values of padding bytes
beyond the first, string-terminating NULL byte.

14-4 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

14.3.2 LIB_DIRY

ARM Object Library Format

The Ll B_DI RY chunk contains a directory of the modulesin thelibrary, each of which
isstored in aLl B_DATA chunk. The directory sizeis fixed when thelibrary is created.
Thedirectory consists of a sequence of variable length entries, each an integral number
of words long. The number of directory entries is determined by the size of the

LI B_DI RY chunk. Table 14-2 shows the layout.

Table 14-2 The LIB_DIRY chunk

Chunklndex

EntryLength

Thesize of thisLI B_DI RY chunk (an integral number of words).

Datal_ength

The size of the Data (an integral number of words).

Data

where;

Chunkl ndex

EntryLengt h

Dat aLengt h

Dat a

isaword containing the zero-origin index within the chunk file
header of the corresponding LI B_DATA chunk. Conventionally,
thefirst three chunks of an OFL fileareLI B_DI RY, LI B_TI ME
and LI B_VRSN, so Chunkl ndex isat least 3. A Chunkl ndex of O
means the directory entry is unused.

The corresponding LI B_DATA chunk entry gives the offset and
size of the library modulein the library file.

isaword containing the number of bytesinthisLI B_DI RY entry,
aways amultiple of 4.

isaword containing the number of bytes used in the data section
of thisLI B_DI RY entry, also amultiple of 4.

consists of, in order:

. a zero-terminated string (the name of the library member).
Strings should contain only 1SO-8859 non-control
characters(codes[0-31], 127 and 128+[0-31] are excluded).
The string field is the name used to identify this library
module. Typicaly it is the name of the file from which the
library member was created.

. any other information relevant to the library module (often
empty).

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 14-5

ARM Object Library Format

. atwo-word, word-aligned time stamp. The format of the
time stamp is described in Time stamps on page 14-7. Its
value isan encoded version of the last-modified time of the
file from which the library member was created.

14.3.3 LIB_VRSN

The version chunk contains a single word whose valueis 1.

14.3.4 LIB_DATA

A LI B_DATA chunk contains one of the library membersindexed by the LI B_DI RY
chunk. The endianness or byte order of thisdatais, by assumption, the same asthe byte
order of the containing library/chunk file.

No other interpretation is placed on the contents of a member by the library
management tools. A member could itself beafilein chunk file format or even another
library.

14-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Library Format

14.4 Time stamps

1441 LIB_TIME

A library time stamp isa pair of words that encode:
. asix byte count of centiseconds since 00:00:00 1st January 1900
. atwo byte count of microseconds since the last centisecond.

First (most significant) word
Contains the most significant 4 bytes of the 6 byte centisecond count.

Second (least significant) word

Containsthe least significant two bytes of the six byte centisecond count
in the most significant half of the word and the two byte count of
microseconds since thelast centisecond in theleast significant half of the
word. Thisisusually 0.

Time stamp words are stored in target system byte order. They must have the same
endianness as the containing chunk file.

ThelLl B_TI Me chunk contains atwo-word (eight-byte) time stamp recording when the
library was last modified.

ARM DUI 0041C

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 14-7

ARM Object Library Format

14.5 Object code libraries

Anobject codelibrary isalibrary file whose members arefilesin ARM Object Format.
An object code library contains two additional chunks:

. an external symbol table chunk named OFL_SYMT
. atime stamp chunk named OFL_TI ME.

1451 OFL_SYMT

The external symbol table contains an entry for each external symbol defined by
members of the library, together with the index of the chunk containing the member
defining that symbol.

The OFL_SYMT chunk has exactly the same format asthe LI B_DI RY chunk except that
the Data section of each entry contains only astring, the name of an external symbol,
and between one and four bytes of NULL padding, asfollows:

Table 14-3 OFL_SYMT chunk layout

Chunklndex
EntryLength The size of this OFL_SYMT chunk (an integral number of words).
Datal_ength The size of the External Symbol Name and Padding (an integral

number of words).

External Symbol Name

Padding

OFL_SYM entries do not contain time stamps.

1452 OFL_TIME

The OFL_TI ME chunk recordswhen the OFL_SYMT chunk waslast modified and hasthe
same format asthe LI B_TI ME chunk (see Time stamps on page 14-7).

14-8 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Chapter 15
ARM Object Format

This chapter describes the ARM Object Format. It contains the following sections:
. ARM Object Format on page 15-2

. Overall structure of an AOF file on page 15-4

. The AOF header chunk (OBJ_HEAD) on page 15-7

. The AREAS chunk (OBJ_AREA) on page 15-13

. Relocation directives on page 15-14

. Symbol Table Chunk Format (OBJ_SYMT) on page 15-17

. The String Table Chunk (OBJ_STRT) on page 15-21

. The Identification Chunk (OBJ_IDFN) on page 15-22.

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-1

ARM Object Format

15.1

1511

15.1.2

ARM Object Format

Areas

This section describes the ARM Object Format (AOF).
The following terms apply throughout this section:
object file referstoafilein ARM Object Format.

address for datain afile, this means offset from the start of the file.

An object file written in AOF consists of any number of named, attributed areas.
Attributes include:

. read-only

. reentrant

. code

. data

. position-independent.

For details see Attributes and alignment on page 15-9.

Typically, acompiled AOF file contains a read-only code area, and a read-write data
area (azero-initialized data areais also common, and reentrant code uses a separate
based area for address constants).

Relocation directives

Associated with each areais a (possibly empty) list of relocation directives which
describe locations that the linker will have to update when:

. anon-zero base address is assigned to the area
. asymboalic reference is resolved.

Each relocation directive may be given relative to the (not yet assigned) base address of

an areain the same AOF file, or relative to a symbol in the symbol table. Each symbol

may:

. have a definition within its containing object file which islocal to the object file

. have adefinition within the object filewhich isvisible globally (to all object files
in thelink step)

. be areference to a symbol defined in some other object file.

15-2

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format

15.1.3 Byte sex or endianness
An AOF file can be produced in either little-endian or big-endian format.

There is no guarantee that the endianness of an AOF file will be the same as the
endianness of the system used to processit (the endianness of thefileisalwaysthe same
as the endianness of the target ARM system).

15.1.4 Alignment

Strings and bytes may be aligned on any byte boundary. AOF fields defined in this
document make no use of halfwords and align words on 4-byte boundaries.

Within the contents of an AOF file, the alignment of words and halfwords is defined by
the use to which AOF is being put. For al current ARM-based systems, words are
aligned on 4-byte boundaries and halfwords on 2-byte boundaries.

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-3

ARM Object Format

15.2 Overall structure of an AOF file

An AOFfile contains anumber of separate piecesof data. To simplify accesstothedata,
and to give adegree of extensibility to tools which process AOF, the object file format
isitself layered on another format called Chunk File Format, which provides asimple
and efficient means of accessing and updating distinct chunks of datawithin asingle
file.

15.2.1 Chunk file format

A filewritten in chunk file format consists of a header, and one or more chunks. The
header isalways positioned at the beginning of thefile. A chunk is accessed through the
header. The header containsthe number, size, location, and identity of each chunk inthe
file.

The size of the header may vary between different chunk files, but it is fixed for each
file. Not all entriesin a header need be used, thus limited expansion of the number of
chunksis permitted without a wholesale copy. A chunk file can be copied without
knowledge of the contents of its chunks.

Chunk file header

The chunk file header consists of two parts:
. the first part is afixed length part of three words
. the second part contains a four word entry for each chunk in thefile.

Thefirst part of the header contains the following three word sized fields:

ChunkFileld Marks the file as a chunk file. Its value is OxC3CBC6Cb. The
endianness of the chunk file can be determined from thisval ue (if
it appears to be 0xC5C6CBC3 when read as aword, each word
value must be byte-reversed before use).

max_chunks Definesthe number of the entriesin the header, fixed when thefile
is created.
num chunks Defines how many chunksare currently used inthefile, which can

vary from 0to max_chunks. Itisredundant in that it can be found
by scanning the entries.

The second part of the header contains afour word entry for each chunk in thefile. The
number of entriesis given by the num chunks field in the first part of the header.

15-4

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format

chunkl d Is an 8-byte field identifying what data the chunk contains. Note
that thisis an 8-byte field, not a 2-word field, so it has the same
byte order independent of endianness.

file_offset Is aone-word field defining the byte offset within the file of the
start of the chunk. All chunks are word-aligned, so it must be
divisible by four. A value of zero indicates that the chunk entry is
unused.

si ze Is aone-word field defining the exact byte size of the chunk’s
contents (which need not be a multiple of four).

Identifying data types

The chunkl d field provides a conventional way of identifying what type of dataa
chunk contains. It has eight characters, and is split into two parts:

. the first four characters contain a unique name allocated by a central authority

. the remaining four characters can be used to identify component chunks within
this domain.

The eight characters are stored in ascending address order, as if they formed part of a
NULL-terminated string, independent of endianness.

For AOF files, thefirst part of each chunk nameis OBJ_. The second components are
defined in the following section.

ARM DUI 0041C

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-5

ARM Object Format

15.2.2 ARM object format

Each piece of an abject fileis stored in aseparate, identifiable chunk. AOF definesfive
chunks as shown in Table 15-1.

Table 15-1 AOF chunks

Chunk Chunk name
AOF Header OBJ_HEAD
Areas OBJ_AREA
Identification OBJ_I DFN

Symbol Table OBJ_SYMr

String Table OBJ_STRT

Only the AOF Header and AREAS chunks must be present, but atypical object file
contains all five of the above chunks.

Each name in an object file is encoded as an offset into the string table, stored in the
0BJ_STRT chunk The String Table Chunk (OBJ_STRT) on page 15-21. Thisallowsthe
variable-length nature of names to be factored out from primary data formats.

A feature of ARM Object Format isthat chunks may appear in any order in thefile (for
example, the ARM C compiler and the ARM assembler produce their AOF chunksin
different orders).

A language translator or other utility may add additional chunks to an object file, for
example, alanguage-specific symbol table or language-specific debugging data.
Thereforeit is conventional to allow space in the chunk header for additional chunks.
Space for eight chunksis conventional when the AOF fileis produced by alanguage
processor which generates all five chunks described here.

Note
The AOF header chunk should not be confused with the chunk file header.

15-6 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format

15.3 The AOF header chunk (OBJ_HEAD)

The AOF header consists of two contiguous parts:

. thefirst part isafixed size part of six wordsthat describes the contents and nature
of the abject file.

. the second part has avariable length (specified in thefirst part of the header), and
consists of asequence of area headers describing the areas within the OBJ_AREA
chunk.

Part one contains the following word sized fields:

hject File Type
The value OxC5E2D080 marks the file as being in relocatable object
format (the usual output of compilers and assemblers and the usual input
to thelinker). The endianness of the object code can be deduced from this
value and must beidentical to the endianness of the containing chunk file.

Version |Id

Encodes the AOF version number. The current version number is 310
(0x136).

Nurber of Areas
The code and data of an object file are encapsulated in a number of
separate areas in the OBJ_AREA chunk, each with a name and some
attributes (see Attributes and alignment on page 15-9).

Each areais described in the variable-length part of the AOF header
which immediately followsthe fixed part. Nunber _of _Ar eas givesthe
number of areasin the file and, equivalently, the number of AREA
declarations that follow the fixed part of the AOF header.

Nurber of Synbol s
If the abject file contains a symbol table chunk (named OBJ_SYM),
Nunmber of Synbol s recordsthe number of symbolsin the symbol
table.

Oneof theareasin an object file may be designated as contai ning the start
address of any program which islinked to include thefile. If thisisthe
case, the entry addressis specified asanEntry Area | ndex, Entry
O fset pair.

Entry Area | ndex
Entry Area |ndex,intherangeltoNunber of Areas, givesthe
1-origin index in the following array of area headers of the area
containing the entry point.

ARM DUI 0041C

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-7

ARM Object Format

A vaueof Ofor Entry Area | ndex signifiesthat no program entry
address is defined by this AOF file.

Entry O f set

The entry address is defined to be the base address of the entry area plus
Entry O fset.

Part two of the AOF header consists of a sequence of area headers. Each areaheader is
five words long, and contains the following word length fields:

Area Nane Givesthe offset of that namein the string table (stored in the OBJ_STRT
chunk. Each areawithin an object file must be given a unique name. See
The String Table Chunk (OBJ_STRT) on page 15-21.

Attributes and Alignment

Thisword contains bit flags that specify the attributes and alignment of
the area. The details are given in Alignment on page 15-3.

Area Size Givesthesizeof theareain bytes. Thisvalue must be amultiple of 4.
UnlesstheNot I nitialised bit (bit12)issetintheareaattributes
(see Attributes and alignment on page 15-9), there must be this number
of bytesfor thisareain the OBJ_AREA chunk. If theNot I nitialised
bit is set, theremust be no initializing bytesfor thisareain the OBJ_ AREA
chunk.

Nunmber of Rel ocations
Specifies the number of relocation directives that apply to this area
(which is equivalent to the number of relocation records following the
contents of the areain the OBJ_ AREA chunk. See The AREAS chunk
(OBJ_AREA) on page 15-13).

Base Address
Is unused unless the area has the absol ute attribute. In this case, thefield
records the base address of the area. In general, giving an area a base
address prior to linking will cause problems for the linker and may
prevent linking altogether, unless only a single object fileisinvolved.

An unused Base Address is denoted by the value 0.

15-8

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

1531

Attributes and alignment

ARM Object Format

Each area has a set of attributes encoded in the most significant 24 bits of the
Attributes + Alignnment word. Theleast significant eight bits of thisword encode
the alignment of the start of the area as a power of 2 and must have a value between 2

and 32 (thisvalue denotesthat the areashould start at an address divisible by 22/19nmenty
Table 15-2 gives a summary of the attributes.

Table 15-2 Area attributes summary

Bit Mask Attribute Description
8 0x00000100 Absolute attribute
9 0x00000200 Code attribute
10 0x00000400 Common block definition
11 0x00000800 Common block reference
12 0x00001000 Uninitialized (zero-initialized)
13 0x00002000 Read-only
14 0x00004000 Position independent
15 0x00008000 Debugging tables
Code areas only
16 0x00010000 Complies with the 32-bit APCS
17 0x00020000 reentrant code
18 0x00040000 Uses extended FP instruction set
19 0x00080000 No software stack checking
20 0x00100000 All relocations are of Thumb code
21 0x00200000 Areamay contain ARM halfword instructions
22 0x00400000 Area suitable for ARM/Thumb interworking

Some combinations of attributes are meaningless, for example, read-only and
zero-initialized.

Thelinker orders areas in a generated image in the following order:
. by attributes
. by the (case-significant) lexicographic order of area names
. by position of the containing object module in the link list.

ARM DUI 0041C

Copyright © 1997 and 1998 ARM Limited. All rights reserved.

15-9

ARM Object Format

Thepositioninthelink list of an object moduleloaded from alibrary isnot predictable.
The precise significance to the linker of area attributes depends on the output being
generated.

Bit 8 Encodes the absolute attribute and denotes that the area must be placed
at its Base Address. Thisbit is not usually set by language processors.

Bit 9 Encodes the code attribute:
1 Indicates code in the area.
0 Indicates data in the area.

Bit 10 Specifies that the areais a common definition.

Common areas with the same name are overlaid on each other by the
linker. The Ar ea Si ze field of acommon definition areadefinesthe size
of acommon block. All other references to this common block must
specify asize which is smaller than or equal to the definition size.

If, inalink step, there is more than one definition of an areawith the
common definition attribute (area of the given name with bit 10 set), each
of these areas must have exactly the same contents. If thereisno
definition of acommon area, its size will be the size of the largest
common reference to it.

Although common areas conventionally hold data, you can use bit 10 in
conjunction with bit 9 to define acommon block containing code. Thisis
useful for defining a code area which must be generated in several
compilation units, but which should be included in the final image only
once.

Bit 11 Defines the areato be areference to a common block, and precludes the
area having initializing data (see Bit 12). In effect, bit 11 implies bit 12.
If both bits 10 and 11 are set, bit 11 isignored.

Bit 12 Encodes the zero-initialized attribute, specifying that the area has no
initializing datain this object file, and that the area contents are missing
from the OBJ_ AREA chunk.

Typically, thisattribute is given to large municipalized data areas. When
amunicipalized areaisincluded in an image, the linker either includes a
read-write area of binary zeros of appropriate size, or maps a read-write
area of appropriate size that will be zeroed at image startup time. This

attribute isincompatible with the read-only attribute (see Bit 13, below).

Whether or not a zero-initialized areais re-zeroed if theimageis
re-entered isaproperty of the relevant image format and/or the system on
which it will be executed. The definition of AOF neither requires nor
precludes re-zeroing.

15-10 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

Bit 13

Bit 14

Bit 15

ARM Object Format

A combination of bit 10 (common definition) and bit 12 (zero-initialized)
has exactly the same meaning as bit 11 (reference to common).

Encodes the read only attribute and denotes that the areawill not be
modified following relocation by the linker. The linker groups read-only
areas together so that they may be write-protected at runtime, hardware
permitting. Code areas and debugging tables must have this bit set. The
setting of this bit isincompatible with the setting of bit 12.

Encodes the position independent (PI) attribute, usually only of
significancefor code areas. Any referenceto amemory addressfromaPl
areamust be in the form of alink-time-fixed offset from a base register
(for example, a pc-relative branch offset).

Encodes the debugging tabl e attribute and denotes that the area contains
symbolic debugging tables. Thelinker groupsthese areastogether so they
can be accessed as a single continuous chunk at or before runtime
(usually, a debugger extracts its debugging tables from the imagefile
prior to starting the debuggee). Usually, debugging tables are read-only
and, therefore, have bit 13 set also. In debugging table areas, bit 9 (the
code attribute) isignored.

Bits 16-22 encode additional attributes of code areas and must be non-zero only if the
area has the code attribute (bit 9) set. Bits 20-22 can be non-zero for data areas.

Bit 16

Bit 17

Bit 18

Bit 19

Bit 20
Bit 21

Encodes the 32-bit PC attribute, and denotes that code in this area
complies with a 32-bit variant of the APCS.

Encodes the reentrant attribute, and denotes that code in this area
complies with areentrant variant of the APCS.

When set, denotes that code in this area uses the ARM floating-point
instruction set. Specifically, function entry and exit use the LFMand SFM
floating-point save and restore instructions rather than multiple LDFES
and STFEs. Codewith thisattribute may not execute on older ARM-based
systems.

Encodesthe No Software Stack Check attribute, denoting that codeinthis
area complies with avariant of the APCS without software stack-limit
checking.

Indicates that this areais a Thumb code area.

Indicatesthat thisareamay contain ARM halfword instructions. This bit
is set by armcc when compiling code for a processor with halfword
instructions such asthe ARM7TDMI.

ARM DUI 0041C

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-11

ARM Object Format

Bit 22 Indicatesthat this area has been compiled to be suitable for ARM/Thumb
interworking. See the ARM Software Development Toolkit User Guide.

Bits23to 31 Arereserved and are set to 0.

15-12 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format

154 The AREAS chunk (OBJ_AREA)

The AREAs chunk containsthe actual area contents, such as code, data, debugging data,
together with their associated relocation data. An areais simply a sequence of bytes.
The endianness of the words and halfwords within it must agree with that of the
containing AOF file. An arealayout is:

Area 1
Area 1 Rel ocation

Area n

Area n Relocation

An areaisfollowed by its associated table of relocation directives (if any). An areais
either completely initialized by the values from the file or isinitialized to zero, as

specified by bit 12 of its area attributes. Both area contents and table of relocation
directives are aligned to 4-byte boundaries.

ARM DUI 0041C

Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-13

ARM Object Format

15.5 Relocation directives

A relocation directive describes avaluewhich is computed at link time or load time, but
which cannot be fixed when the object module is created.

In the absence of applicablerel ocation directives, the value of abyte, halfword, word or
instruction from the preceding areais exactly the value that will appear in the final
image.

A field may be subject to more than one relocation.

Figure 15-1 shows arelocation directive.

offset
1 |II| BlA | R |FT|24—bit STD

Figure 15-1 Relocation directive

O f set isthe byte offset in the preceding area of the subject field to be relocated by a
value calculated as described below.

The interpretation of the 24-bit SI D field depends on the value of the A bit (bit 27):

A=1 The subject field isrelocated (as further described below) by the value of
the symbol of which SI Disthe zero-origin index in the symbol table
chunk.

A=0 The subject field is relocated (as further described bel ow) by the base of

the area of which SI Disthe zero-origin index in the array of areas, (or,
equivalently, in the array of area headers).

The two-bit field type FT (bits 25, 24) describes the subject field:

00 the field to be relocated is a byte.

01 the field to be relocated is a halfword (two bytes).

10 the field to be relocated is aword (four bytes).

11 the field to be relocated is an instruction or instruction sequence.

If bit O of the relocation offset is set, this identifies a Thumb instruction
sequence, otherwise it is taken to be an ARM instruction sequence.

Bytes, halfwords and instructions may only be relocated by values of small size.
Overflow isfaulted by the linker.

15-14

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format

An ARM branch or branch-with-link instruction is always a suitable subject for a
relocation directive of field type instruction. For details of other relocatable instruction
sequences, refer to 3.6 Handling Relocation Directives on page 3-16.

If the subject field is an instruction sequence, the addressin O f set points to the first
instruction of the sequence, andthe I | field (bits 29 and 30) constrains how many
instructions may be modified by this directive:

00 no constraint (the linker may modify as many contiguous instructions as
it needs to).

01 the linker will modify at most 1 instruction.

10 the linker will modify at most 2 instructions.

1 the linker will modify at most 3 instructions.

The R (pc-relative) bit, modified by the B (based) bit, determines how the relocation
value is used to modify the subject field:

R (bit 26) =0 and B (bit 28) =0
This specifies plain additive relocation. The relocation valueis added to
the subject field. In pseudo code;

subject _field = subject_field + rel ocation_val ue

R (bit 26) =1 and B (bit 28) =0
This specifies pc-relative relocation. To the subject field is added the
difference between the rel ocation value and the base of the area
containing the subject field. In pseudo code:
subject _field =
subject _field +
(rel ocation_val ue-base_of _area_contai ni ng(subject_fie

I'd))

Asaspecial case, if AisO, and therelocation valueis specified asthe base
of the area containing the subject field, it is not added and:

subject field =

subject_field - base_of _area_contai ni ng(subject_field)
This caters for relocatable pc-relative branches to fixed target addresses.
If Ris1, Bisusualy 0. A Bvaueof 1isused to denote that the

inter-link-unit value of abranch destination is to be used, rather than the
more usual intra-link-unit value.

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-15

ARM Object Format

R (bit 26) = 0 and B (bit 28) = 1

This specifies based arearelocation. The relocation value must be an
address within a based data area. The subject field isincremented by the
difference between this value and the base address of the consolidated
based areagroup (thelinker consolidates all areas based on the same base
register into a single, contiguous region of the output image).

In pseudo code:

subject field =

subject field +

(relocation_val ue -
base_of _area_group_contai ni ng(rel ocation_val ue))

For example, when generating reentrant code, the C compiler places
address constants in an address constant area based on register sb, and
loads them using sb-relative LDR instructions. At link time, separate
address constant areas will be merged and sb will no longer point where
presumed at compile time. B type relocation of the LDR instructions
correctsfor this.

Bits 29 and 30 of the relocation flags word must be 0. Bit 31 must be 1.

15-16

Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format

15,6 Symbol Table Chunk Format (OBJ_SYMT)

TheNunber of Synbol s fieldinthefixed part of the AOF header (OBJ_HEAD chunk)
defines how many entriesthere arein the symbol table. Each symbol table entry isfour
words long and contains the following word length fields:

Nane Isthe offset in the string table (in chunk OBJ_STRT) of the character
string name of the symbol.

Attributes

Are summarized in Table 15-2. Refer to Symbol attributes on page 15-18
for afull description of the attributes.

Val ue Is meaningful only if the symbol is a defining occurrence (bit O of
Attri butes set), or acommon symbol (bit 6 of Attri but es set):

. if the symbol is absolute (bits 0-2 of At t ri but es set), thisfield
contains the value of the symbol

. if the symboal isacommon symbol (bit 6 of At t ri but es set), this
contains the byte length of the referenced common area.

. otherwise, Val ue isinterpreted as an offset from the base address
of the area named by Area Nane, which must be an area defined
in this object file.

Area Nanme Ismeaningful only if the symbol isanon-absolute defining occurrence
(bitOof At tri but es set, bit 2 unset). In this caseit givesthe index into
the string table for the name of the areain which the symbol is defined
(which must be an areain this object file).

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-17

ARM Object Format

15.6.1 Symbol attributes

Table 15-3 summarizes the symbol attributes.

Table 15-3 Symbol attributes

Bit Mask Attribute description
0 0x00000001 Symbol isdefined in thisfile
1 0x00000002 Symbol has a global scope
2 0x00000004 Absolute attribute
3 0x00000008 Case-insensitive attribute
4 0x00000010 Weak attribute
6 0x00000040 Common éttribute

Code symbolsonly:
8 0x00000100 Code area datum attribute
9 0x00000200 FP argsin FP regs attribute
12 0x00001000 Thumb symbol

The Symbol At t ri but es word isinterpreted as follows:

Bit 0 Denotes that the symbol is defined in this object file.

Bit 1 Denotes that the symbol has global scope and can be matched by the
linker to asimilarly named symbol from another object file.

01 Bit 1 unset, bit 0 set. Denotesthat the symbol isdefined in this
object file and has scope limited to this object file (when
resolving symbol references, the linker will only match this
symbol to references from within the same object file).

10 Bit 1 set, bit 0 unset. Denotes that the symbol isareferenceto
asymbol defined in another object file. If no defining instance
of the symbol isfound, the linker attempts to match the name
of the symbol to the names of common blocks. If amatchis
found, itisasif an identically-named symbol of global scope
were defined, taking its value from the base address of the
common area.

1 Denotes that the symbol is defined in this object file with
global scope (when attempting to resolve unresolved
references, the linker will match this definition to areference
from another object file).

00 Isreserved.

15-18 Copyright © 1997 and 1998 ARM Limited. All rights reserved.

ARM DUI 0041C

Bit 2

Bit 3

Bit 4

Bit 5
Bit 6

Bit 7

ARM Object Format

Encodes the absol ute attribute which is meaningful only if the symbol is
adefining occurrence (bit 0 set). If set, it denotes that the symbol has an
absolute value, for example, a constant. If unset, the symbol valueis
relative to the base address of the area defined by the Area Namefield of
the symbol.

Encodesthe caseinsensitive reference attribute which ismeaningful only
if the symbol isan external reference (bits 1, 0= 10). If set, thelinker will
ignore the case of the symbol namesit tries to match when attempting to
resolve this reference.

Encodesthe weak attribute which ismeaningful only if the symbol isan
external reference (bits 1, 0 = 10). It denotesthat it is acceptable for the
reference to remain unsatisfied and for any fields relocated viait to
remain unrelocated. The linker ignores weak references when deciding
which members to load from an object library.

Isreserved and must be set to 0.

Encodes the common attribute, which is meaningful only if the symbol
isan external reference (bits 1, 0 = 10). If set, the symbol is areference
to a common area with the symbol’s name. The length of the common
areais given by the symbol’s Value field (see above). The linker treats
common symbols much asit treats areas having the Common Reference
attribute. All symbols with the same name are assigned the same base
address, and the length allocated is the maximum of all specified lengths.

If the name of a common symbol matches the name of acommon area,
these are merged and the symbol identifies the base of the area.

All common symbols for which there is no matching common area
(reference or definition) are collected into an anonymous, linker-created,
pseudo-area.

Isreserved and must be set to 0.

Bits 8-11 encode additional attributes of symbols defined in code areas.

Bit 8

Bit 9

Encodes the code datum attribute which is meaningful only if this
symbol defines alocation within an area having the Code attribute. It
denotes that the symbol identifies a (usually read-only) datum, rather
than an executable instruction.

Encodesthe floating-point argumentsin floating-point register s attribute.
Thisismeaningful only if the symbol identifies afunction entry point. A
symbolic reference with this attribute cannot be matched by the linker to
asymbol definition which lacks the attribute.

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-19

ARM Object Format

Bit 10 Is reserved and must be set to 0.
Bit 11 Is reserved and must be set to 0.
Bit 12 The Thumb attribute. Thisis set if the symbol isa Thumb symbol.

15-20 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

ARM Object Format

15.7 The String Table Chunk (OBJ_STRT)

The string table chunk contains all the print names referred to from the header and
symbol table chunks. This separation is made to factor out the variable length
characteristic of print names from the key data structures.

A print nameis stored in the string table as a sequence of non-control characters (codes
32-126 and 160-255) terminated by aNULL (0) byte, andisidentified by an offset from
the start of the table. The first four bytes of the string table contain itslength (including
the length of its length word), so no valid offset into the table is less than four, and no
table has length less than four.

The endianness of the length word must be identical to the endianness of the AOF and
chunk files containing it.

ARM DUI 0041C Copyright © 1997 and 1998 ARM Limited. All rights reserved. 15-21

ARM Object Format

15.8 The Identification Chunk (OBJ_IDFN)

This chunk should contain a string of printable characters (codes 10-13 and 32-126)
terminated by aNULL (0) byte, which givesinformation about the name and version of
the tool which generated the object file.

Use of codesin the range 128-255 is discouraged, as the interpretation of these values
is host-dependent.

15-22 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0041C

